martes, 1 de septiembre de 2015

OSMOSIS


Osmosis es el paso de moléculas de solventes o del agua de una región de mayor concentración a otra de menor concentración a través de la membrana.
La ósmosis es un fenómeno físico relacionado con el movimiento de un solvente a través de una membrana semipermeable. Tal comportamiento supone una difusión simple a través de la membrana, sin gasto de energía. La ósmosis del agua es un fenómeno biológico importante para el metabolismo celular de los seres vivos.
Se denomina membrana semipermeable a la que contiene poros o agujeros, al igual que cualquier filtro, de tamaño molecular. El tamaño de los poros es tan minúsculo que deja pasar las moléculas pequeñas pero no las grandes, normalmente del tamaño de micrometros. Por ejemplo, deja pasar las moléculas de agua, que son pequeñas, pero no las de azúcar, que son más grandes.
Si una membrana como la descrita separa un líquido en dos particiones, una de agua pura y otra de agua con azúcar, suceden varias cosas, explicadas a fines del siglo XIX por Van 't Hoff y Gibbs empleando conceptos de potencial electroquímico y difusión simple, entendiendo que este último fenómeno implica no sólo el movimiento al azar de las partículas hasta lograr la homogénea distribución de las mismas y esto ocurre cuando las partículas que vienen se equiparan con las que aleatoriamente van, sino el equilibrio de los potenciales químicos de ambas particiones. Los potenciales químicos de los componentes de una solución son menores que la suma del potencial de dichos componentes cuando no están ligados en la solución. Este desequilibrio, que está en relación directa con la osmolaridad de la solución, genera un flujo de partículas solventes hacia la zona de menor potencial que se expresa como presión osmótica mensurable en términos de presión atmosférica, por ejemplo: "existe una presión osmótica de 50 atmósferas entre agua desalinizada y agua de mar". El solvente fluirá hacia el soluto hasta equilibrar dicho potencial o hasta que la presión hidrostática equilibre la presión osmótica.
El resultado final es que, aunque el agua pasa de la zona de baja concentración a la de alta concentración y viceversa, hay un flujo neto mayor de moléculas de agua que pasan desde la zona de baja concentración a la de alta.
Dicho de otro modo: dado suficiente tiempo, parte del agua de la zona sin azúcar habrá pasado a la de agua con azúcar. El agua pasa de la zona de baja concentración a la de alta concentración.
Las moléculas de agua atraviesan la membrana semipermeable desde la disolución de menor concentración, disolución hipotónica, a la de mayor concentración, disolución hipertónica. Cuando el trasvase de agua iguala las dos concentraciones, las disoluciones reciben el nombre de isotónicas.
En los seres vivos, este movimiento del agua a través de la membrana celular puede producir que algunas células se arruguen por una pérdida excesiva de agua, o bien que se hinchen, posiblemente hasta reventar, por un aumento también excesivo en el contenido celular de agua. Para evitar estas dos situaciones, de consecuencias desastrosas para las células, estas poseen mecanismos para expulsar el agua o los iones mediante un transporte que requiere gasto de energía.




·         Fundamento físico
En un sistema binario no reaccionante, en que los componentes no acarrean carga eléctrica y existe una temperatura uniforme e igual para dos reservorios, se tiene que la producción de entropía es la combinación lineal de productos entre flujos y fuerzas del sistema:3
\sigma=\sum_i{Y_i X_i}=j_1'\frac{(\Delta\mu_1)_{T,p}}{T}-j_{v}\frac{\Delta p}{T}
Donde los flujos son simplemente el flujo de difusión relativo del compuesto 1 y el flujo relativo de velocidades de los componentes:
j_1'=j_1-\frac{c_1}{c_2}j_2 \qquad j_v=v_1 j_1 + v_2 j_2
Las fuerzas termodinámicas son diferencias entre magnitudes intensivas entre los dos reservorios: potencial químico y presión
X_1=-\frac{(\Delta\mu_1)_{T,p}}{T}=-\mu_{11}^c \frac{\Delta c_1}{T} \qquad ;\qquad X_v=-\frac{\Delta p}{T}
\begin{bmatrix} \; j_1' \\ \; j_v \end{bmatrix}= \begin{bmatrix}
  \; \Lambda_{11} & \lambda_{v1} \\
  \; \Lambda_{1v} & \Lambda_{vv} \\ 
\end{bmatrix}\begin{bmatrix} \; -\mu_{11}^c \frac{\Delta c_1}{T} \\ \; -\frac{\Delta p}{T} \end{bmatrix}
De lo que se deduce, para una situación estacionaria (j_v=0) que una diferencia de concentraciones en los depósitos provoca una diferencia de presiones y viceversa. Son los fenómenos de osmosis y osmosis inversa, dados por la relación:
\frac{\Delta p}{\Delta c_1}=-\mu_{11}^c \frac{\Lambda_{v1}}{\Lambda_{vv}}.
A la diferencia de presiones \Delta p que provoca una determinada diferencia de concentración \Delta c_1se denomina presión osmótica.




·         Ósmosis inversa
Lo descrito hasta ahora ocurre en situaciones normales, en que los dos lados de la membrana estén a la misma presión; si se aumenta la presión del lado de mayor concentración, puede lograrse que el agua pase desde el lado de alta concentración al de baja concentración de sales.
Se puede decir que se está haciendo lo contrario de la ósmosis, por eso se llama ósmosis inversa. Téngase en cuenta que en la ósmosis inversa a través de la membrana semipermeable sólo pasa agua. Es decir, el agua de la zona de alta concentración pasa a la de baja concentración.

Si la alta concentración es de sal, por ejemplo agua marina, al aplicar presión, el agua del mar pasa al otro lado de la membrana. Sólo el agua, no la sal. Es decir, el agua se ha desalinizado por ósmosis inversa, y puede llegar a ser potable.

0 comentarios :

Publicar un comentario